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Abstract—In this paper, methods for detection of frequency-
hopping spread spectrum (FHSS) signals from compressive
measurements are proposed. Rapid switching of the carrier
frequency in a pseudorandom manner makes detection of FHSS
signals challenging. Conventionally, FHSS detection is performed
by scanning small segments of the spectrum in a sequential manner
using a sweeping spectrum analyzer (SSA). However, SSAs have
the inherent risk of missing the transmitted signal depending on
factors such as the rate of hopping and scanning. In this paper, we
propose compressive detection strategies that sample the full FHSS
spectrum in a compressive manner. We discuss the use of random
measurement kernels as well as designed measurement kernels in
the proposed architecture. The measurement kernels are designed
to maximize the mutual information between the FHSS signal
and the compressive measurements. Using a mixture-of-Gaussian
model to represent the FHSS signal, we derive a closed-form gra-
dient of the mutual information with respect to the measurement
kernel. Theoretical analysis and simulation results are provided
to compare different systems. These results demonstrate that the
proposed compressive system with random measurement kernels is
not subject to the performance limitations suffered by SSAs when
their scanning rates are low and designed adaptive measurement
kernels provide enhanced detection performance compared to
random ones.

Index Terms—Spread spectrum, FHSS, sweeping spectrum an-
alyzer (SSA), compressive detection, mutual information, adaptive
detection.

I. INTRODUCTION

FREQUENCY-hopping spread spectrum (FHSS) is a spread
spectrum (SS) modulation technique used in communica-

tion systems [1]. In FHSS, the spectrum of the signal is spread
by switching the carrier frequency in a pseudo-random manner.
The pseudo-random switching sequence used by the transmit-
ter is known to a cooperative receiver and, thus, the transmit-
ter/receiver pair can communicate in synchronization using the
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same carrier frequency. The rapidly switching carrier frequency
of FHSS systems enables several desirable attributes: first, the
instantaneous interference from FHSS signals to other signals
is often insignificant since the period of interference is lim-
ited by the hopping period. Similarly, the FHSS signals are
also resistant to interference from other signals since they do
not occupy a fixed frequency range for extended periods. This
property also makes FHSS signals resistant to jamming. Finally,
the rapid switching of the carrier frequency makes detection of
FHSS signals challenging as well. Since the FHSS signals can
hop over very large bandwidths, the observation of such large
bandwidths for signal detection presents significant challenges
to conventional detectors.

Although many novel detection methods (e.g. autocorrela-
tion based [2]–[5], wavelet-based [2], [6]–[10], likelihood based
[11]–[16], time-frequency feature analysis based [6], [17]–[21])
have been proposed in the literature, the most common method
for detection of FHSS signals is to use channelized radiome-
ters to measure signal energy [22]–[24]. A typical radiometer
uses a bandpass filter to select the frequency band over which
measurements are made. Since FHSS signals hop over large
frequency ranges, energy measurements are needed over these
large bandwidths. If the FHSS signal can be sampled at a high
enough rate to capture the full FHSS bandwidth, a digital fil-
terbank can be used to detect energy in each channel. However,
capturing the entire FHSS bandwidth often requires very high-
rate analog-to-digital converters. A common method to measure
energy over a large frequency range is to use a sweeping spec-
trum analyzer (SSA) [15], [25]–[29]. An SSA sequentially scans
frequency bands and measures signal energy in each frequency
band. However, the detection performance of the SSA is highly
dependent on its scanning rate and the hopping rate of the FHSS
signal. If the scanning rate of the SSA is not high enough, the
scanning support can miss the hopping signal.

In this paper, motivated by the recent compressive sensing
(CS) theory [30], [31], we propose methods for detection of
FHSS signals from compressive measurements. While most of
the compressive sensing methods aim to reconstruct a signal
by exploiting its sparsity, our goal is to detect the presence of
the FHSS signals. Several methods for compressive detection
were proposed in the literature over the last decade [32]–[38].
Some of these methods assume that the signal can be sparsely
represented in known dictionaries [33], [35], [37], [38]. Others
assume precise knowledge of the signal [32] or propose to learn
the signal sparsity model from training signals [34]. The com-
pressive detection methods in this paper are based on energy
detection and only require knowledge of the signal variance.
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Fig. 1. Block diagram of a scanning spectrum analyzer.

Similar to [32], our methods work directly on the compressive
measurements and do not require an intermediate step of sig-
nal recovery. While most of the compressive detection methods
in the literature use dense matrices for sampling, the use of
sparse random projections for compressive detection was also
proposed recently [38]. In this work, we used block-diagonal
sensing matrices similar to those proposed in [39] for signal
recovery problems. The resulting compressive detection archi-
tecture has comparable hardware cost to the SSA-based sys-
tems. It utilizes wideband measurement kernels but performs
compressive measurements such that the data acquisition rate
of the proposed system is similar to that of SSA-based systems.
However, the proposed system is not subject to the performance
limitations suffered by SSAs when their scanning rates are low.
We discuss the use of random measurement kernels as well as
designed measurement kernels in the proposed architecture. It
should be noted that compressive detection methods for multi-
ple access have also been introduced recently [40]–[43]. While
the analysis in this work focuses on the single-user detection
setting and the use of designed measurement kernels, extension
of this framework to multi-user setting is also possible [44].

The remainder of this paper is organized as follows: in
Section II, the conventional SSA systems are discussed and
a model to analyze the theoretical performance of these systems
is developed. In Section III, our proposed compressive detec-
tion method is introduced. A method for designed compressive
measurement kernel design is proposed in Section IV. Theoreti-
cal and experimental results are presented in Section V. Finally,
Section VI provides a summary and the conclusions.

II. DETECTION OF FHSS SIGNALS USING SSAS

As discussed in the previous section, energy detection us-
ing SSAs is arguably the most common method for detection
of FHSS signals [29]. In this section, we develop a model to
analyze the theoretical detection performance of SSA-based en-
ergy detection. The block diagram of a typical SSA is shown in
Fig. 1. Here, the input signal is mixed with the signal from a
voltage controlled oscillator (VCO). The mixed signal is passed
through a low-pass filter and the filter output is sampled with
the Nyquist rate with respect to the passband of the low-pass
filter. The samples are used to detect the presence or absence of
FHSS signals. By sweeping the frequency of the VCO signal,
SSA scans different frequency subbands.

An FHSS signal can be represented as:

s(t) = A(t)ej (2πfc (t)) (1)

where A(t) denotes the signal in baseband and fc(t) denotes
the time-varying carrier frequency. By changing the carrier fre-
quency fc(t) randomly at certain time intervals, the FHSS signal
switches among many frequency channels. Let B denote the full
frequency hopping range of the FHSS signal. Let’s also assume
that the SSA uniformly divides this range into Nb subbands
which are scanned sequentially. Then, the Nyquist sampling
rate used to scan each subband is computed with respect to
the bandwidth of each subband B/Nb . Let α denote the rela-
tive scanning rate which is defined as the number of scanning
intervals per FHSS hopping period. Mathematically, α can be
expressed as:

α =
Ns

Nh
(2)

where Ns denotes the number of subbands scanned within a
given time period and Nh denotes the number of frequency hops
during the same period. Note that when α ≥ Nb , SSA scans the
entire hopping frequency range before the FHSS signal hops.
We refer to this regime as the fast scanning regime. Conversely,
when α < Nb , the signal hops before the SSA scans the entire
hopping frequency range. We refer to this regime as the fast
hopping regime. To simplify our analysis, we assume that α is
either a rational number of 1 divided by a positive integer or a
positive integer that can divide or be divided by Nb .

During the ith scanning interval, the relationship between the
measurement vector yi and the FHSS signal si can be modeled
by:

yi = Φi(si + ni) (3)

where ni denotes the additive channel noise and Φi denotes the
matrix representation of the measurement kernel during the ith

scanning interval. Here, measurements are obtained by applying
a bandpass filter to the noisy input signal so the matrix Φi repre-
sents this bandpass filtering process. In this discretized notation,
if the signal si is discretized at the Nyquist rate corresponding to
the full hopping bandwidth to yield N samples and M measure-
ments are made during the ith scanning interval, the matrix Φi

will have the dimensions M×N . The channel noise ni is mod-
eled as complex zero-mean additive white Gaussian noise with
variance σ2

n covering the entire FHSS hopping range. To simply
our derivations, si is modeled as a complex zero-mean Gaussian
white signal with variance σ2

s within the scanning support that
it falls in.

During each scanning period, the decision on the presence
or absence of the FHSS signal can be made based on energy
detection. This detection problem can be formulated as a choice
between two hypotheses:

H0,i : yi = Φini (4)

H1,i : yi = Φi(si + ni) (5)

where H0,i and H1,i denote the signal absent and signal present
hypotheses in the ith scanning interval, respectively. Given the
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detection decisions made in all scanning intervals, the final de-
tection decision is made after the entire FHSS hopping range is
observed. If the decision “signal present” is made in at least one
of the scanning intervals, the final decision “signal present” is
made; otherwise, the final decision “signal absent” is made.

Let λi = ‖yi‖2
2 denote the measurement energy during the

ith scanning interval where ‖·‖2
2 denotes the squared 2-norm

operation. Assuming that the low-pass filter in Fig. 1 is ideal,
the variance of the input signal is preserved in the measurement
since Φi is row-wise orthonormal, i.e., Φ†

iΦi = IM , where ·†
represents the conjugate transpose (Hermitian) operation and
IM denotes the M × M identity matrix. Then λi is the sum
of the energies of M independent and identically distributed
(i.i.d.) zero-mean circularly-symmetric Gaussian complex ran-
dom variables with the variances of σ2

n . Equivalently, λi cab also
be expressed as the sum of squares of 2M i.i.d. zero-mean Gaus-
sian real random variables with variances σ 2

n
2 . Let Ei = 2λi

σ 2
n

. Ei

is central χ-squared distributed with 2M degrees of freedom
[45]:

p(Ei |H0,i) =
Ei

(M −1)e−
E i
2

2M Γ(M)
(6)

where Γ(·) denotes the gamma function. Thus, the distribution
of λi when the signal is absent is given by:

p(λi |H0,i) =
(2λi

σ 2
n
)(M −1)e−

2 λi
σ 2

n
2

2M Γ(M)
· 2
σ2

n
=

λi
(M −1)e

− λi
σ n 2

σn
2M Γ(M)

. (7)

Using the distribution in (7), the theoretical false positive rate
(FPR) during the ith scanning interval is calculated by:

FPRi =
∫ +∞

Ti

p(λi |H0,i)dλi (8)

where Ti denotes the detection threshold used during the ith

scanning interval. The overall theoretical FPR (i.e. the FPR
associated with the final detection decision after all Nb subbands
are scanned) is then calculated by:

FPR = 1 − TNR = 1 −
Nb∏
i=1

TNRi = 1 −
Nb∏
i=1

(1 − FPRi) (9)

where TNRi denotes the theoretical true negative rate (TNR)
during the ith scanning interval.

When the signal is present, the overall false negative rate
(FNR) depends on the relative scanning rate α. If the scan-
ning rate is not faster than the FHSS hopping rate (i.e., α ≤ 1),
the scanning intervals are independent. The distribution of the
measurement energy during the ith scanning interval is then
calculated as:

p(λi |H1,i)

=

1
α∑

k=0

( 1
α

k

)
(pi)

k (1 − pi)
1
α −k λi

(M −1)e
− λi

α k N b σ s 2 + σ n 2

(αkNbσs
2 + σn

2)M Γ(M)
(10)

where pi denotes the probability that the ith subband is occupied
by the FHSS signal at any given time. Mathematically,

pi = Pr

(
fmin +

(i − 1)·B
Nb

< fc(t) < fmin +
i·B
Nb

)
(11)

where fmin denotes the lower bound of the frequency hopping
range.

Note that when α ≤ 1, the FHSS signal can occupy the
scanned subband multiple times during a scanning interval and,
therefore, p(λi |H1,i) becomes a mixture of chi-squared distri-
butions as shown in (10). Using the distribution in (10), the
theoretical FNR during the ith scanning interval is given by:

FNRi =
∫ Ti

−∞
p(λi |H1,i)dλi . (12)

The overall theoretical FNR (i.e. the FNR associated with the
final detection decision after all Nb subbands are scanned) is
then given by:

FNR =
Nb∏
i=1

FNRi . (13)

Next, we consider the case when 1 < α < Nb . In this case,
the scanning rate is fast enough to cover multiple subbands
during a single hopping period. More specifically, the SSA can
scan α subbands before the FHSS signal hops. We can therefore
consider that the entire set of Nb subbands are divided into Nb

α
groups with α subbands each. We refer to these as scan groups.
Let j denote the scan group index. Since there are Nb

α scan
groups, j ∈ {1, 2, . . . , Nb

α }. Similarly, we will use i to denote
the subband (or equivalently scanning interval) index. Since
there are Nb subbands, i ∈ {1, 2, . . . , Nb}. It can be seen that
subbands i = 1, 2, . . . , α will be scanned during scan group j =
1, subbands i = α + 1, α + 2, . . . , 2α will be scanned during
scan group j = 2, and so on. Let us denote the FNR during jth

scan group as FNRg ,j where the subscript “g” denotes “group”.
In order to calculate this value, we need to consider two cases:
When the signal falls within the support of the jth scan group
and when it falls out of this support during the time period
associated with the jth scan group. In our subsequent notation,
we will use “gp” to denote “group when signal present” and
“ga” to denote “group when signal absent.” Let us denote the
FNR corresponding to each of these cases using FNRgp,j and
FNRga,j , respectively. Then the FNR during the jth scan group
can be expressed as:

FNRg ,j = FNRgp,j +

⎡
⎣1 −

jα∑
i=(j−1)α+1

pi

⎤
⎦ FNRga,j . (14)

In (14), the term [1 −
∑jα

i=(j−1)α+1 pi ] corresponds to the prob-

ability of the signal being outside the support of the jth scan
group. When the signal is within the support of the jth scan
group, it will occupy one of the subbands ((j − 1)α + 1)th
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through jαth. Therefore, we can express FNRgp,j as:

FNRgp,j =
jα∑

i=(j−1)α+1

piFNRgp,i,j (15)

where FNRgp,i,j denotes the FNR when the signal falls into the
support of the ith scanning interval during the time interval of
the jth scan group. FNRgp,i,j can be calculated as the product
of two terms:

FNRgp,i,j = FNR
′

gp,i,j ·FNR
′′

gp,i,j . (16)

Here, FNR
′
gp,i,j denotes the FNR when the signal falls within

the ith subband during the jth scan group and FNR
′′
gp,i,j de-

notes the FNR when the signal falls within one of the other
subbands (i.e. subbands k ∈ {(j − 1)α + 1, . . . , jα}, k �= i)
within the support of the jth scan group. These quantities can be
calculated as:

FNR
′

gp,i,j =
∫ Ti

−∞

λi
(M −1)e

− λi
N b σ s 2 + σ n 2

(Nbσs
2 + σn

2)M Γ(M)
dλi (17)

and

FNR
′′

gp,i,j =
jα∏

k=(j−1)α+1

∫ Tk

−∞

λk
(M −1)e

− λk
σ n 2

σn
2M Γ(M)

dλk

k �= i (18)

respectively. Similarly, FNRga,j can be calculated as:

FNRga,j =
jα∏

i=(j−1)α+1

∫ Ti

−∞

λi
(M −1)e

− λi
σ n 2

σn
2M Γ(M)

dλi , (19)

since it is the FNR corresponding to when the signal is not
within the support of the jth scan group. The overall theoretical
FNR (after all scan groups have been scanned) for this case is
given by:

FNR =

N b
α∏

j=1

FNRg ,j . (20)

Finally, we consider the case when the scanning rate is much
faster than the hopping rate such that the scanner can scan all
Nb subbands before the signal hops. In this case, α ≥ Nb . It is
easy to see that this case can be considered as having a single
scan group which contains all subbands. Therefore, the FNR in
this case can be obtained by setting j = 1 and α = Nb in (15).
This yields:

FNR =
Nb∑
i=1

piFNRgp,i,1 . (21)

The FPR and FNR calculated in this section can be used to
evaluate the detection performance of SSAs. As we will illus-
trate in Section V, SSAs suffer from a “floor” problem in their
FNR when α < Nb . This floor is due to the non-zero probability
that the SSA misses the hopping signal if the scanning rate of the
SSA is not fast enough to cover the entire hopping range before
the signal hops. A detailed evaluation of this floor problem is
presented in Section V.

Fig. 2. Block diagram of the proposed compressive detector.

III. COMPRESSIVE DETECTION OF FHSS SIGNALS

The recent CS theory, as presented in the seminal works of
Candes et al. [30] and Donoho [31], provides a novel perspec-
tive on sufficient sampling. This new perspective resulted in ex-
tensive research on compressive systems over the past decade.
Motivated by the CS theory, we investigate compressive ap-
proaches to detect the presence or absence of FHSS signals in
this work. We start this section by introducing our compres-
sive detection framework. The block diagram of the proposed
framework is shown in Fig. 2. In this architecture, the noisy
input signal is mixed with wide-band measurement kernels and
passed through a low-pass filter. The output of the low-pass fil-
ter is sampled at a rate much lower than the one suggested by
the Nyquist sampling theorem for the full FHSS hopping band-
width. Therefore, this measurement system is compressive. The
compressive measurements are then used to detect the presence
or absence of FHSS signals. It is worth pointing out that this
architecture is very similar to the SSA architecture shown in
Fig. 1 with the exception that the measurements are obtained
using wide-band measurement kernels in this case whereas the
SSA uses band-limited measurement kernels. Similar compres-
sive measurement structure was also used in [39] to sense the
input signal compressively with different kinds of measurement
kernels discussed. In contrast, the sparsity of the signal was
observed and CS algorithms were discussed in [39] in order to
reconstruct the signal from the compressive measurements.

In this framework, the relationship between the measurement
vector y and the signal s can be modeled by

y = Φ(s + n) (22)

where n denotes the complex additive white Gaussian channel
noise with zero-mean and variance σ2

n over the entire SS range.
In our analysis, we divide the measurement process into Nb

sequential observation intervals. Note that the proposed com-
pressive detection method can work with any number of mea-
surements and this division of the measurement process into
sequential observation intervals is not strictly necessary. How-
ever, we analyze the performance of the proposed method under
these conditions to allow a fair comparison with the SSA-based
system. During each observation interval i, the measurements,
the signal, and the channel noise are denoted by yi , si and ni

respectively. Naturally, by concatenating yi for 1 ≤ i ≤ Nb , the
full measurement vector y can be obtained. Similarly, the signal
vector s and the noise vector n can be obtained by concate-
nating vectors si and ni , respectively, for 1 ≤ i ≤ Nb . During
each observation interval, the complex M × N measurement
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kernel is denoted by Φi . The full measurement matrix Φ is a
MNb × NNb block-diagonal matrix where the diagonal blocks
consist of Φi for 1 ≤ i ≤ Nb .

The detection problem can be formulated as a decision be-
tween two hypothesis:

H0 : y = Φn (23)

H1 : y = Φ(s + n) (24)

where H0 and H1 denote the signal absent and signal present
hypotheses, respectively.

Since we are interested in compressive measurements, it is
worth defining the compression ratio (CR) in this setting. Given
that N is the number of samples needed to sample the signal at
the Nyquist rate and M is the number of measurements during
each observation interval, the CR is given by CR = N

M . For the
measurement system shown in Fig. 2, the measurement matrix
in each observation interval, Φi , is block-diagonal where each
block is a 1 × CR vector.

Most of the existing CS signal recovery methods rely on ran-
dom measurement kernels since random measurement kernels
yield, with high probability, incoherent measurements with any
sparsity domain. In our compressive detection framework, ran-
dom measurements can be obtained by randomly selecting the
non-zero entries of the measurement matrix Φ. Assuming such
Φ with normalized rows and modeling the FHSS signal s as a
complex zero-mean Gaussian white signal with the variance σ2

s ,
the measurements are i.i.d. Gaussian and, therefore, the distri-
bution of measurement energy, which is defined as λ = ‖y‖2

2 ,
follows the central chi-squared distribution for the signal absent
case:

p(λ|H0) =
λ(M Nb −1)e

− λ

σ n 2

σn
2M Nb Γ(MNb)

. (25)

Similar to (25), the distribution of the measurement energy λ

for the signal present case follows the central chi-squared dis-
tribution given by:

p(λ|H1) =
λ(M Nb −1)e

− λ

(σ s 2 + σ n 2 )

(σs
2 + σn

2)M Nb Γ(MNb)
. (26)

Given a threshold T , the theoretical FPR of this compressive
detection system is calculated by:

FPR =
∫ +

T

p(λ|H0)dλ (27)

and the theoretical FNR is calculated by:

FNR =
∫ T

−∞
p(λ|H1)dλ. (28)

From (27) and (28), we can see that the performance of our
proposed compressive detection system does not depend on the
relative measurement rate α. This is an important advantage of
the proposed compressive detection system over the SSA based
detection systems. Results shown in Section V will quantify this
advantage.

IV. KNOWLEDGE ENHANCED COMPRESSIVE DETECTION

OF FHSS SIGNALS

In the previous section, a compressive detection framework
using random measurement kernels was proposed. While most
of the CS literature uses random measurement kernels, there
is existing work [46], [47] which illustrates that compressive
measurement kernels designed using prior knowledge of the
signal and the measurement system can improve performance.
Motivated by [46], [47], we extend our compressive detection
framework to consider the use of designed measurement kernels
in this section.

Specifically, we propose to design measurement kernels that
maximize the mutual information between the FHSS signal and
the measurements. This design procedure can be described as
follows: recall from Section III that the measurement process
is divided into Nb sequential observation intervals. During the
observation interval i, the M × N measurement kernel is de-
noted by Φi . As illustrated in Section III, only a small fraction
of the entries in each row of Φi are non-zero. Let Φi,m denote
the non-zero entries in the mth row of this measurement matrix
Φi . Let si,m , ni,m and yi,m denote the signal, the noise, and the
measurement, respectively, during the time interval correspond-
ing to Φi,m . Similar to the random compressive measurement
kernel, we add one additional constraint in the optimization pro-
cess that Φi,m is normalized. The goal of measurement kernel
design is to obtain Φi,m such that:

Φi,m = arg max
Φ̂ i , m

I(yi,m ; si,m )

s.t. yi,m = Φ̂i,m (si,m + ni,m ) and ‖Φ̂i,m‖2 = 1 (29)

where I(yi,m ; si,m ) denotes the mutual information between the
measurement yi,m and the FHSS signal si,m . In other words,
the goal of the measurement kernel design is to maximize the
information about the signal in the measurements. The mutual
information metric in (29) can be expanded as:

I(yi,m ; si,m ) = h(yi,m ) − h(yi,m |si,m ). (30)

We note that the conditional differential entropy term
h(yi,m |si,m ) depends only on the noise power when ‖Φ̂i,m‖2 =
1 and has no effect on the maximization problem of (29) for a
given noise level. This can be seen by considering the condi-
tional differential entropy:

h(yi,m |si,m ) = h((Φ̂i,mni,m + Φ̂i,m si,m )|Φ̂i,m si,m )

= h(Φ̂i,mni,m ). (31)

When ‖Φ̂i,m‖2 = 1, Φ̂i,mni,m is a zero-mean circularly-
symmetric jointly-Gaussian complex random vector and, thus,
h(yi,m |si,m ) depends only on the noise power. Therefore, an
equivalent form of (29) can be given as:

Φi,m = arg max
Φ̂ i , m

h(yi,m )

s.t. yi,m = Φ̂i,m (si,m + ni,m ) and ‖Φ̂i,m‖2 = 1. (32)

The problem represented by (32) can be computationally
challenging to solve for arbitrary signals. To achieve a
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computationally efficient solution, we utilize a mixture-of-
Gaussian (MoG) model to represent the FHSS signal. MoG dis-
tributions are commonly used in signal processing applications
since they allow accurate description of many real-world signals
and are often mathematically tractable. Recently, there has also
been interest in using MoG models in CS applications [47]–[51].
In our application, the use of the MoG model allows efficient
solution of the problem in (32) through the use of a closed-form
gradient approximation. In our model, we uniformly divide the
FHSS hopping range into Nb subbands. Within each subband,
the distribution of the FHSS signal is modeled as a complex
zero-mean Gaussian white signal with variance σ2

s . This MoG
distribution is given by:

g(si,m ) =
Nb∑
l=1

wl CN (0,C(l)
ss ) (33)

where wl denotes the weight of the lth Gaussian component, and
CN (0,C(l)

ss ) denotes the probability density function of a com-
plex zero-mean white Gaussian random variable within the lth

subband, and C(l)
ss denotes the corresponding covariance matrix.

Since the lth component of the MoG represents the FHSS signal
within the lth subband as a complex zero-mean Gaussian white
signal with variance σ2

s within the subband, the covariance C(l)
ss

can be calculated by computing the product of the autocorrela-
tion of the impulse response of the ideal bandpass filter with its
passband as the lth subband and the variance σ2

s . It can be seen
that each component in this MoG model represents the FHSS
signal in one of the Nb subbands.

Given this MoG model, additive white Gaussian noise, and
the constraint that the rows of Φi are normalized, it can be
shown that the problem in (32) can be further reduced to:

Φi,m = arg max
Φ̂ i , m

h(yi,m |H1)

s.t. ‖Φ̂i,m‖2 = 1
(34)

where h(yi,m |H1) denotes the entropy of the measurement in
the signal present case. Details of the derivations used to obtain
this result are given in the Appendix. In order to solve (34),
an iterative gradient method is implemented. At each iteration,
Φi,m is refined using:

X = Φ(j )
i,m + μ∇Φ i , m

h(yi,m |H1)

Φ(j+1)
i,m =

X
‖X‖2

(35)

where Φ(j )
i,m and Φ(j+1)

i,m denote the non-zero entries of the
mth row of Φi after j and j + 1 iterations, respectively, and
μ denotes the step size. An approximation to the gradient term
∇Φ i , m

h(yi,m |H1) is provided in the Appendix.

A. Prior Knowledge Enhanced Measurement Kernel Design

In the above derivations, both the conditional entropy
h(yi,m |H1) and its gradient ∇Φ i , m

h(yi,m |H1) are functions
of the signal distribution which was modeled as an MoG distri-
bution. In this MoG signal model, the weights of the Gaussian

components wl for 1 ≤ l ≤ Nb are taken to be the subband oc-
cupancy probabilities of the FHSS signal. Given these weights
of the Gaussian components wl , optimized measurement ker-
nels can be designed using (34) and (35). Here, we assume
that the subband usage probabilities of the FHSS signal do not
change over time. Thus, the measurement kernels are designed
once and used repeatedly throughout the observation process.
More specifically, (34) and (35) can be used to design the non-
zero entries Φi,m in the mth row of the measurement matrix Φi

for 1 ≤ m ≤ M . After all its rows are designed, the measure-
ment matrix Φi is used repeatedly during the entire observation
process. In other words, in this case, the measurement matrix
Φi is constant across all observation intervals indexed by i.

B. Adaptive Measurement Kernel Design

The method described in the previous subsection can be used
to exploit the non-uniformity of the subband usage probabilities
to obtain optimized compressive measurement kernels. While
this may be of interest in some limited applications, the sub-
band usage probabilities in most FHSS applications are uni-
form. Therefore, there may not be significant non-uniformity in
the probabilities to exploit. However, the framework described
above lays the foundation for adaptive compressive measure-
ments. In this approach, the measurement kernels Φi,m are
designed adaptively. After each measurement, a posterior prob-
ability distribution of subband usage under the signal present as-
sumption is calculated using all previous measurements, which
is often non-uniform. These posterior probabilities are used to
replace the Gaussian component weights wl in the above frame-
work and a new measurement kernel that will be used during
the next observation interval is obtained. To calculate the poste-
rior probabilities, prior probabilities obtained from the previous
measurement periods and likelihood values computed using the
measurements from the current measurement period are used.

V. RESULTS

Both theoretical analysis and simulations using practical
FHSS signals were performed to evaluate and compare the de-
tection performances of the systems discussed in the previous
sections. These results are presented in this section.

A. Theoretical Detection Performance

We first compare the performances of the conventional de-
tection system based on SSA and the compressive detection
system with random measurement kernels. The theoretical FNR
(i.e. probability of miss) calculated using the formulas derived
earlier in this paper versus signal-to-noise ratio (SNR) is shown
in Fig. 3. Here, the SNR is defined as:

SNR =
σ2

s

σ2
n
. (36)

In addition to the SSA and the proposed compressive detec-
tion with random measurement kernels, a clairvoyant system
with knowledge of the FHSS hopping sequence was also imple-
mented as reference. The clairvoyant system used measurement
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Fig. 3. Comparison of theoretical FHSS detection performances of different
detection systems. α is the relative scanning/measurement rate, i.e., the number
of scanning intervals (the SSA based detection system) or observation intervals
(compressive detection systems) per FHSS hopping period.

kernels focused on the subband that the FHSS signal occupied
at any given time. Although unpractical, the clairvoyant system
serves as a benchmark in the presented results. In Fig. 3, the
plots corresponding to four different α (relative scanning rate
in the SSA based detection system and relative measurement
rate in compressive detection systems) values are shown. The
thresholds in the systems were obtained by setting the overall
theoretical FPRs to 0.01: for SSA, the thresholds Ti’s were cal-
culated by solving (8) with equal FPRi values for 1 ≤ i ≤ Nb ,

so that FPRi = 1 − (1 − FPR)
1

N b according to (9); and for the
compressive detection system, the threshold T was calculated
by solving (27). The results in this figure are for uniform chan-
nel usage of the FHSS signal, and correspond to parameters
CR = Nb = 20 and M = 16.

In Fig. 3, it is shown that the clairvoyant system, although
unpractical, has the lowest probability of miss at all SNR and

α values and serves as a benchmark. It is also shown that the
conventional detection system based on SSA suffers from an
evident “floor” in its FNR at high SNR values, if the relative
scanning rate is not high enough. This floor results from the
non-zero probability that the scanning support of SSA misses
the hopping frequency of the FHSS signal in those cases. It can
also be observed that the compressive detection system with
random measurement kernels has slightly higher FNR than the
SSA based system at low SNR values due to the Noise Folding
effect [52]. However, the compressive detection system does
not suffer from the FNR “floor” problem as in the SSA based
system and has a better performance than the SSA based system
over a large range of SNR values.

B. Detection Performance from Simulations

A Monte-Carlo simulation study was also conducted to com-
pare the performances of the SSA and the proposed compressive
detection with random measurement kernels. The FNR versus
SNR obtained in these simulations are shown in Fig. 4. The
FHSS signals used in these simulations were similar to those
specified by the Bluetooth standard [53]. Bluetooth signals
are obtained by combining Gaussian frequency-shift keying
modulation of binary symbols with FHSS. The standard spec-
ifies 79 channels with 1 MHz channel bandwidth distributed
between 2.402 GHz and 2.480 GHz. In order to match the sim-
ulation setup to the theoretical analysis setup, we set Nb = 20.
We specified 80 frequency channels and left the last channel
unused. As a result, the number of frequency channels cov-
ered by a scanning subband was set to 4. Four symbol periods
were taken as a scanning interval in the SSA based detection
system and an observation interval in the compressive detec-
tion system. Therefore, the number of Nyquist samples in each
scanning/observation interval was 320. Different α values were
obtained by varying the number of symbol periods per scan-
ning/observation interval. The clairvoyant system with knowl-
edge of the FHSS hopping sequence was also implemented as
reference. A whitening step was applied to the measurements
in the SSA and clairvoyant systems to counter the correlation
introduced by the non-ideal filters used in the simulations. In
the compressive detection system, CR was set to 20 so that
the number of measurements during an observation interval
in the compressive detection system is equal to the number of
measurements during a scanning interval in the SSA based de-
tection system. The same thresholds used in theoretical analysis
were used in these simulations so that the overall theoretical
FPRs were 0.01. 106 Monte-Carlo simulations were performed
to generate each point in the curves of Fig. 4.

In Fig. 4, we can see that the simulated performances of
the clairvoyant and the compressive detection systems match
well with the results obtained by theoretical analysis in Fig. 3.
However, the FNR “floor” problem in the SSA based system is
somewhat reduced in Fig. 4. This happens because of the usage
of non-ideal filters in the practical simulations. With non-ideal
filters, the signals outside the passband of the filters were not
completely stopped. This unintentional leakage improves the
detection performance of the SSA based detection system.
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Fig. 4. Comparison of simulated FHSS Detection Performances of Different
Detection Systems. α is the relative scanning/measurement rate, i.e., the number
of scanning intervals (the SSA based detection system) or observation intervals
(compressive detection systems) per FHSS hopping period.

Fig. 5. Prior distribution of the subband occupation used in the experiments.

Next, we evaluate the performance of the compressive detec-
tion system with optimized measurement kernels using Monte
Carlo simulations. Here, we considered the static design case
where the measurement kernels were optimized once and used
throughout the measurement process. The FHSS signals used
in these simulations were almost the same as those used above
except that we set Nb = 20 when designing measurement ker-
nels and the prior distribution of the subband occupation was
no longer uniform but followed the distribution shown in Fig. 5.
Similar to the experiments above, we set CR = Nb for the

Fig. 6. Comparison of simulated FHSS detection performance of compressive
detection system with prior knowledge enhanced measurement kernels with
other detection systems. α is the relative scanning/measurement rate, i.e., the
number of scanning intervals (the SSA based detection system) or observation
intervals (compressive detection systems) per FHSS hopping period.

compressive detection methods and the same thresholds used
in theoretical analysis were used in these simulations so that
the overall theoretical FPRs were 0.01. The clairvoyant system
with knowledge of the FHSS hopping sequence was also im-
plemented as reference. The results are shown in Fig. 6, where
106 Monte-Carlo simulations were performed to generate each
point in the curves.

In Fig. 6, the detection performance of the compressive de-
tection system with prior knowledge enhanced measurement
kernels is superior to that of the compressive detection system
with random measurement kernels when the relative observation
rate α is low. This improvement can be several orders of magni-
tude decrease in FNR. However, when the relative observation
rate α is high, the performance of the compressive detection
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system with prior knowledge enhanced measurement kernels
gets worse. Especially when α ≥ Nb so that an FHSS hopping
period covers the entire observation interval, the prior knowl-
edge enhanced measurement kernels turn out to have worse per-
formance than the random measurement kernels at high SNR
values. This happens because as α increases, the spectra during
the entire observation process becomes farther and farther away
from that specified in Fig. 5. As a result, the support of the prior
knowledge enhanced measurement kernels are more likely to
miss the signal in these cases.

We also performed simulations using uniform prior subband
usage distributions to design static measurement kernels. In this
experiment, the measurement kernels were designed prior to
the start of the measurement process and used throughout the
measurement process. As expected, the detection performance
obtained using these statically designed measurement kernels
were the same as the performance of the random measurement
kernels shown in Fig. 4.

The performance of the adaptive compressive detection ap-
proach was also evaluated using simulations. We compare the
FNRs of the adaptive compressive detection approach to the
compressive detection approach with random measurement ker-
nels after each observation/scanning interval. The detection de-
cisions were made at the end of each observation interval using
all the measurements from the first observation interval to the
current observation interval. In the adaptive measurement kernel
design, we initialized the first row of the measurement kernel in
the first observation interval Φ1,1 to be from the prior knowl-
edge enhanced measurement kernel assuming uniform subband
occupation, and designed the remaining measurement kernels
following (34) and (35). We used almost the same setup of the
FHSS signals as those used to obtain the results in Fig. 4 except
that we set the relative observation rate α = 20 so that the fre-
quency channel of the FHSS signal did not hop during the entire
observation process. Therefore, the posterior distribution of the
subband occupation of the FHSS signals remained valid since
no frequency hopping took place. Similar to the simulations
with prior knowledge enhanced measurement kernels, we set
CR = Nb = 20. However, the distribution of the subband oc-
cupation in these simulations was taken to be uniform. SNR was
fixed to−5 dB. The simulation results are shown in Fig. 7. In the
figure, Dwell Time denotes the number of observation intervals
and 20 000 Monte-Carlo simulations were performed to gener-
ate each point in the curves. The thresholds were determined by
setting the overall FPR to 0.01 using the measurements that had
already been made: the threshold at the Dwell time DT was got
by solving (28), with (25) replaced with:

p(λ|H1) =
λ(M ·DT −1)e

− λ

σ n 2

σn
2M ·DT Γ(M ·DT )

. (37)

In Fig. 7, we can observe that the FNR of the adaptive com-
pressive detection system decreases faster than the compressive
detection system with random measurement kernels. Therefore,
much fewer observation intervals are needed for the adaptive
compressive detection system to achive a particular FNR com-
pared to the compressive detection system with random kernels.

Fig. 7. Comparison of simulated FHSS detection performance of the adaptive
compressive detection system with the random compressive detection system.

Similarly, after a given number of observation intervals, the
adaptive compressive detection system has much lower FNR
than the compressive detection system with random measure-
ment kernels, and the improvement can be several orders in
magnitude.

VI. SUMMARY AND CONCLUSION

In this paper, we proposed methods for non-cooperative com-
pressive detection of FHSS signals. We introduced the FHSS
detection problem and provided a model to analyze the theoret-
ical performance of conventional SSA-based detection systems.
We then introduced a compressive detection approach that uses
random measurement kernels. In addition to the compressive
detection system with random measurement kernels, we also
introduced compressive detection systems with designed mea-
surement kernels and illustrated how the measurement kernels
can be adapted during the measurement process. The proposed
detection methods were evaluated using both theoretical anal-
ysis and simulations using practical FHSS signals. The experi-
mental results illustrated that the compressive detection systems
do not suffer from the FNR “floor” problem which is observed
in SSA based systems when the relative scanning rate is low and
the SNR is high. In addition, experimental results also illustrate
that prior (or posterior) knowledge of signal distribution can be
used to design measurement kernels which yield enhanced de-
tection performance compared to random measurement kernels.

APPENDIX

DERIVATIONS OF THE COMPRESSIVE MEASUREMENT KERNEL

DESIGN METHOD

In this Appendix, we provide the details of the derivations
used to obtain (34) and (35). Recall that we modeled the FHSS
signal by dividing the FHSS hopping range into Nb subbands
and modeling the distribution of the FHSS signal by a complex
zero-mean Gaussian white signal within each subband. This
MoG distribution was given in (33). Given this MoG signal
model and zero-mean additive Gaussian white noise with vari-
ance σ2

n , the distribution of the mth measurement during the ith
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observation interval yi,m is also an MoG distribution:

f(yi,m ) = Ps

Nb∑
l=1

wlfl(yi,m ) + (1 − Ps)f0(yi,m ) (38)

where Ps denotes the probability of signal present

f0(yi,m ) = CN (0, σ2
nΦi,m IC RΦ†

i,m ) (39)

denotes the distribution of yi,m in the signal absent case, and

fl(yi,m ) = CN (0,Φi,mC(l)
xxΦ

†
i,m ) (40)

denotes the distribution of yi,m when the lth subband is used

in the signal present case with C(l)
xx = C(l)

ss + σ2
nIC R and IC R

denoting the CR × CR identity matrix.
Given this distribution, we can compute the differential

entropy:

h(yi,m )

= −
∫

f(yi,m )log[f(yi,m )]dyi,m

= −
∫ (

Ps

Nb∑
l=1

wlfl(yi,m ) + (1 − Ps)f0(yi,m )

)

· log

[
Ps

Nb∑
l=1

wlfl(yi,m ) + (1 − Ps)f0(yi,m )

]
dyi,m . (41)

Approximating the term log[Ps
∑Nb

l=1 wlfl(yi,m ) + (1 −
Ps)f0(yi,m )] by the first two terms of its Taylor expansion at
E[yi,m ] = 0, we get:

log

[
Ps

Nb∑
l=1

wlfl(yi,m ) + (1 − Ps)f0(yi,m )

]

= log

[
Ps

Nb∑
l=1

wlfl(0) + (1 − Ps)f0(0)

]

+ ∇yi , m

{
log

[
Ps

Nb∑
l=1

wlfl(yi,m )

+ (1 − Ps)f0(yi,m )
]}

|yi , m =0 ·yi,m + H.O.T.

≈ log

[
Ps

Nb∑
l=1

wlfl(0) + (1 − Ps)f0(0)

]
+ G(0)·yi,m (42)

where H.O.T. denotes the higher order terms in the Taylor
expansion and G(0) = ∇yi , m

{log[Ps
∑Nb

l=1 wlfl(yi,m ) + (1 −
Ps)f0(yi,m )]}|yi , m =0 .

Substituting (42) into (41), we get:

h(yi,m )

≈ −
∫ (

Ps

Nb∑
l=1

wlfl(yi,m ) + (1 − Ps)f0(yi,m )

)

[
log

[
Ps

Nb∑
l=1

wlfl(0) + (1 − Ps)f0(0)

]
+ G(0)·yi,m

]
dyi,m

=−log

[
Ps

Nb∑
l=1

wlfl(0) + (1 − Ps)f0(0)

]

=−log

[
Ps

Nb∑
l=1

wl

π(Φi,mC(l)
xxΦ

†
i,m )

+
1 − Ps

π(σ2
nΦi,m IC RΦ†

i,m )

]
.

(43)

Similarly, the differential entropy of yi,m in the signal present
case is calculated by:

h(yi,m |H1)≈− log

[
Nb∑
l=1

wl

π(Φi,mC(l)
xxΦ

†
i,m )

]
. (44)

When the probability of signal present Ps is fixed and given
the constraint that Φi,m are normalized, the second term inside
the summation in (43) is a constant. Therefore, maximizing the
entropy h(yi,m ) is equivalent to maximizing the conditional
entropy h(yi,m |H1).

To obtain the gradient ∇Φ i , m
h(yi,m |H1), we use the chain

rule for the derivatives:

∇Φ i , m
h(yi,m |H1)

≈ ∇Φ i , m

{
−log

[
Nb∑
l=1

wl

π(Φi,mC(l)
xxΦ†

i,m )

]}

= −
∑Nb

l=1 wlπ
−1∇Φi , m {(Φi,mC(l)

xxΦ
†
i,m )

−1
}

∑Nb
l=1 wlπ−1(Φi,mC(l)

xxΦ†
i,m )

−1

=

∑Nb
l=1 wlπ

−1(Φi,mC(l)
xxΦ†

i,m )
−2

Φi,mC(l)
xx

†

∑Nb
l=1 wlπ−1(Φi,mC(l)

xxΦ†
i,m )

−1

=

∑Nb
l=1 wl(Φi,mC(l)

xxΦ
†
i,m )

−2
Φi,mC(l)

xx
†

∑Nb
l=1 wl(Φi,mC(l)

xxΦ†
i,m )

−1 . (45)
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